The Application and Evaluation of the LMDI Method in Building Carbon Emissions Analysis: A Comprehensive Review

Author:

Li Yangluxi1,Chen Huishu2ORCID,Yu Peijun3,Yang Li4ORCID

Affiliation:

1. Welsh School of Architecture, Cardiff University, Cardiff CF10 3XQ, UK

2. School of Architecture & Urban Planning, Shenzhen University, Shenzhen 518060, China

3. School of Materials Science and Engineering, Hainan University, Haikou 570228, China

4. College of Architecture & Urban Planning, Tongji University, Shanghai 200092, China

Abstract

The Logarithmic Mean Divisia Index (LMDI) method is widely applied in research on carbon emissions, urban energy consumption, and the building sector, and is useful for theoretical research and evaluation. The approach is especially beneficial for combating climate change and encouraging energy transitions. During the method’s development, there are opportunities to develop advanced formulas to improve the accuracy of studies, as indicated by past research, that have yet to be fully explored through experimentation. This study reviews previous research on the LMDI method in the context of building carbon emissions, offering a comprehensive overview of its application. It summarizes the technical foundations, applications, and evaluations of the LMDI method and analyzes the major research trends and common calculation methods used in the past 25 years in the LMDI-related field. Moreover, it reviews the use of the LMDI in the building sector, urban energy, and carbon emissions and discusses other methods, such as the Generalized Divisia Index Method (GDIM), Decision Making Trial and Evaluation Laboratory (DEMATEL), and Interpretive Structural Modeling (ISM) techniques. This study explores and compares the advantages and disadvantages of these methods and their use in the building sector to the LMDI. Finally, this paper concludes by highlighting future possibilities of the LMDI, suggesting how the LMDI can be integrated with other models for more comprehensive analysis. However, in current research, there is still a lack of an extensive study of the driving factors in low-carbon city development. The previous related studies often focused on single factors or specific domains without an interdisciplinary understanding of the interactions between factors. Moreover, traditional decomposition methods, such as the LMDI, face challenges in handling large-scale data and highly depend on data quality. Together with the estimation of kernel density and spatial correlation analysis, the enhanced LMDI method overcomes these drawbacks by offering a more comprehensive review of the drivers of energy usage and carbon emissions. Integrating machine learning and big data technologies can enhance data-processing capabilities and analytical accuracy, offering scientific policy recommendations and practical tools for low-carbon city development. Through particular case studies, this paper indicates the effectiveness of these approaches and proposes measures that include optimizing building design, enhancing energy efficiency, and refining energy-management procedures. These efforts aim to promote smart cities and achieve sustainable development goals.

Publisher

MDPI AG

Reference72 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3