Integrating Smart City Principles in the Numerical Simulation Analysis on Passive Energy Saving of Small and Medium Gymnasiums

Author:

Qian Feng12,Sun Hongliang13,Yang Li12ORCID

Affiliation:

1. College of Architecture & Urban Planing, Tongji University, 1239 Si Ping Road, Shanghai 200092, China

2. Key Laboratory of Ecology and Energy Saving Study of Dense Habitat (Tongji University), Ministry of Education, Siping Rd. 1239, Shanghai 200092, China

3. Gaochi International Design Co., Ltd., Shanghai Branch, Shanghai 201702, China

Abstract

With the increasing energy consumption in buildings, the proportion of energy consumption in public buildings continues to grow. As an essential component of public buildings, sports buildings are receiving more attention regarding energy-saving technologies. This paper aims to study the passive energy-saving design methods of small-and medium-sized sports halls in hot summer and cold winter regions, exploring how to reduce building energy consumption by improving the spatial design and thermal performance of the enclosure structures of sports halls. Taking the Wuhu County Sports Center as an example, this study uses computer simulation software to analyze the building’s wind environment and the thermal performance of its external walls and roof. The results show that the large volume of the sports hall significantly impacts the distribution of wind speed and pressure around it, and this impact decreases with height. The thermal simulation of the enclosure structures demonstrates that adding insulation layers to the interior and exterior of the walls and roof of the sports hall is an effective way to reduce energy consumption in both winter and summer. Additionally, wind environment simulations of different roof shapes reveal that flat roofs have the most significant blocking effect on wind and are prone to inducing strong vortices on the leeward side; concave arch roofs have the least blocking effect on airflow, and arch and wave-shaped roofs maintain lower vortex intensity on the leeward side. Hopefully, this study can provide significant references for the energy-saving design of future small- and medium-sized sports buildings.

Publisher

MDPI AG

Reference48 articles.

1. Structure and environmental impact of global energy consumption;Bilgen;Renew. Sustain. Energy Rev.,2014

2. An overview of energy consumption of the globalized world economy;Chen;Energy Policy,2011

3. What goes up: Recent trends in China’s energy consumption;Sinton;Energy Policy,2000

4. Digitalization and energy: How does internet development affect China’s energy consumption?;Ren;Energy Econ.,2021

5. Sports and urban development: An introduction;Dickson;Int. J. Sports Mark. Spons.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3