On the Optical Characterization of Architectural Three-Dimensional Skins and Their Solar Control Potential

Author:

Mainini Andrea GiovanniORCID,Speroni Alberto,Poli TizianaORCID,Zinzi MicheleORCID

Abstract

The use of second building skins is becoming a trademark in modern architecture, opening for innovative solutions, such as three-dimensional (3D) systems. This paper explores the potential of these systems to provide adequate solar protection to glazed façades by means of an advanced optical characterization. Spectral transmittance and reflectance of fourteen samples, belonging to several technological families, are measured with a built-in spectrophotometer, suitable to accurately characterize complex semi-transparent systems. Solar and lighting properties are then calculated. The normal optical properties strongly depend on the openness factor, thus the geometry primarily affects the performance. A total of 11 samples exhibit normal solar transmittance in the 40–53% range; the value decreases to 20% for the plissé metal grid and increases to 70% on average for metal meshes. The angular transmittance depends on the system texture geometry and its self-shading capabilities. It was found that such systems underperform as static conventional shading systems; however, one of the metal meshes, the plissé grid and the plastic grid exhibit relevant angular selectivity, with transmittance decay at 60° in the 58–72% range compared to the normal incidence value. The results show that some of the selected 3D systems provide adequate solar protection. The developed dataset can be used for early-stage design analyses, as well as for energy performance model input and validation.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3