Experimental and Numerical Study on the Insulation Performance of a Photo-Thermal Roof in Hot Summer and Cold Winter Areas

Author:

Zhang Ying,Sun HongfaORCID,Long Jibo,Zeng Li,Shen Xiaohang

Abstract

The use of a solar architecture system is a feasible way to reduce the energy consumption of a building. The system also has important significance to the “Dual-carbon” plan. In this study, the heat transfer characteristics of a photo-thermal roof were analyzed in hot summer and cold winter zones; a model to calculate insulation performance was established. In the summer climate, the thermal performances of the photo-thermal roof and an ordinary roof were explored through experiments and simulations. The results showed that the heat transfer and temperature of the photo-thermal roof were lower than those of the ordinary roof. Heat transfer through a photo-thermal roof can be changed by adjusting the water flow of collectors. The water saturation of insulation materials is an important factor that affects the insulation performance of a roof. Compared with the ordinary roof, the change in water saturation was shown to have less impact on the insulation performance of the photo-thermal roof. The water saturation increased from 0 to 30%, while the heat transfer per unit area of the photo-thermal roof only increased by 0.9 W/m2; 97.3% lower than that of the ordinary roof. The effect of reducing the insulation material thickness was less for the photo-thermal roof than for the ordinary roof. When the insulation material thickness was reduced from 100 mm to 0 mm, the average temperature in the indoor non-working area reached 38.5 °C and 27.1 °C in the ordinary roof and the photo-thermal roof, respectively. The insulation thickness of the photo-thermal roof had little effect on the indoor air temperature. The research results provide a reference for the roof energy-saving design of new buildings and the roof energy-saving transformation of existing buildings.

Funder

The National Natural Science Foundation of China

The Excellent Youth Project of Education Bureau of Hunan Province, China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3