The Creation of Construction Schedules in 4D BIM: A Comparison of Conventional and Automated Approaches

Author:

Doukari OmarORCID,Seck BoubacarORCID,Greenwood David

Abstract

Building Information Modelling (BIM) is now a globally recognised phenomenon, though its adoption remains inconsistent and variable between and within the construction sectors of different countries. BIM technology has enabled a wide range of functional applications, one of which, ‘4D BIM’, involves linking the tasks in a project’s construction schedule to its object-orientated 3D model to improve the logistical decision making and delivery of the project. Ideally, this can be automatically generated but in reality, this is not currently possible, and the process requires considerable manual effort. The level of maturity and expertise in the use of BIM amongst the project participants still varies considerably; adding further obstacles to the ability to derive full benefits from BIM. Reflecting these challenges, two case studies are presented in this paper. The first describes a predominantly manual approach that was used to ameliorate the implementation of 4D BIM on a project in Paris. In fact, there is scope for automating the process: a combination of BIM and Artificial Intelligence (AI) could exploit newly-available data that are increasingly obtainable from smart devices or IoT sensors. A prerequisite for doing so is the development of dedicated ontologies that enable the formalisation of the domain knowledge that is relevant to a particular project typology. Perhaps the most challenging example of this is the case of renovation projects. In the second case study, part of a large European research project, the authors propose such an ontology and demonstrate its application by developing a digital tool for application within the context of deep renovation projects.

Funder

European Union’s Horizon 2020 Research and Innovation Programme through the RINNO project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3