Study on Deterioration Characteristics of Uniaxial Compression Performance and Microstructure Changes of Red-Bed Mudstone during Gaseous Water Sorption

Author:

Zhu Hongbing,Fu Zhenghao,Yu Fei,Li Sai

Abstract

Previously conducted studies have established that gaseous water sorption of mudstone is widespread in nature. The deterioration of its uniaxial compression properties during gaseous water sorption can cause engineering problems. However, related studies were currently in the initial stage of this research direction. On the one hand, there were few studies on the deterioration characteristics of the uniaxial compression properties of mudstone in this process. The results might not be applicable to all projects. On the other hand, its microstructure changes in this process were unclear. Therefore, to obtain the deterioration characteristics of uniaxial compressive performance during gaseous water sorption for offering scientific reference to the geotechnical engineering of mudstone in the central Sichuan region of China, red-bed mudstone was used as a research material. A swelling test and uniaxial compression tests were carried out. To clarify microstructure changes for advancing the depth of research on the effects of gaseous water on mudstone, scanning electron microscopy (SEM) tests were performed. As a result of this study, formulas were first established that could correctly characterize the deterioration of uniaxial compressive strength (UCS) and elastic modulus when the moisture absorption rate increased. Secondly, the dependence was obtained, which was the relationship between both the UCS and elastic modulus and moisture absorption time. Finally, microstructure changes were revealed during gaseous water sorption.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3