Investigation into the Large Deformation Mechanism and Control Technology of Variable Cross-Section Tunnel in Layered Mudstone Stratum

Author:

Fan Shengyuan,Song Zhanping,Li Xu,Zhang Yuwei,Liu Lianbaichao

Abstract

Buildings (structures) with various structural forms are becoming increasingly prevalent and are encountering more challenging engineering issues. Field investigations, laboratory tests, and numerical simulations were used to study the disaster-causing mechanism and the control technology for a variable cross-section tunnel passing through layered, expansive mudstone stratum. The deformation and stress characteristics of the surrounding rock and supporting structure were examined by both numerical simulation and field monitoring. The results indicated that the stress was more complex at different section positions; the rock and supporting structure underwent substantially more deformation and stress in the broadened sections. The mean values of the surrounding rock’s horizontal convergence and vault settlement in the broadened section were 15.71% and 16.36% higher than those in the general section, respectively, and the value of lining stress was 35.51% higher. Additionally, the simulation results under the improved construction measures matched the measured results. The maximum deformation and stress of the surrounding rock were reduced by 16.95% and 40.04%, respectively, under the improved scheme, while the lining stress was reduced by 45.38%. The stress state of the secondary lining was significantly improved; in particular, the tensile stress in the lining structure under the original construction scheme was converted into a compressive state under the new measures, fully utilizing the bearing effect. Finally, the rationality and effectiveness of the adopted reinforcement measures were evaluated, and the experiences and lessons learned were summarized to provide insights for preventing similar incidents from reoccurring.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan

Science and Technology Development Program of Shaanxi Provincial Department of Housing and Urban-rural Construction

Special Project of Shaanxi Provincial Education Department

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3