Abstract
This paper aims to propose new stability equations for the design of shallow, unlined horseshoe tunnels in rock masses. The computational framework of the upper- and lower-bound finite-element limit analysis is used to numerically derive the stability solutions of this problems using the Hoek–Brown failure criterion. Five dimensionless parameters including the width ratio and the cover-depth ratio of the tunnels, as well as the normalized uniaxial compressive strength, the geological strength index, and the yield parameters of the Hoek–Brown rock masses, are considered in the study. Selected failure mechanisms of the horseshoe tunnels in rock masses are presented to portray the effect of all dimensionless parameters. New design equations for stability analyses of horseshoe tunnels are developed using the technique of nonlinear regression analysis and the average bound solutions. The proposed stability equations are highly accurate and can be used with great confidence by practitioners.
Funder
National Science, Research and Innovation Fund
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献