Monitoring Approaches for New-Generation Energy Performance Certificates in Residential Buildings

Author:

Salvalai GrazianoORCID,Sesana Marta MariaORCID

Abstract

In 2002, the Energy Performance of Building Directive (EPBD) introduced energy certification schemes to classify and compare building performances to support reaching energy efficiency targets by informing the different actors of the building sectors. However, since its implementation, the Energy Performance Certifications (EPCs) remained unexploited with limited impact on the energy savings targets. In this context, the EPC RECAST project aims at studying a new generation of EPCs with a focus on the residential sector. More in detail, the paper presents and frames a monitoring approach based on low-cost and non-invasive technology for real data collection in existing residential apartments/houses. The method is based on different levels of monitoring selected according to the typology of the building (e.g., detached house, apartment), services (e.g., centralized or local energy generation), and energy vectors (e.g., natural gas or electricity). Three different levels have been identified (named as: basic, medium, and advanced) and for each one, different plug and play monitoring sensor kits have been selected. Six representative pilot buildings have been identified and selected to verify the approach in general and, in particular, the sensors’ applicability and communication, the data reliability, and the monitoring platform. The presented work highlights, on the one hand, the general feasibility of the proposed monitoring approach; on the other, it highlights the difficulty of fully standardizing the sensors kits considering that each building/apartment has specific characteristics and constraints that have to be carefully analyzed. The use of the ultrasonic flow meters represents a good technical option for reducing the cost and the impact on the existing plant system; however, their installation must be verified considering that the logger needs to be powered and the sensors calibrated for collecting reliable data.

Funder

European Union Horizon 2020 research programme

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3