Forecasting Energy Consumption of a Public Building Using Transformer and Support Vector Regression

Author:

Huang Junhui,Kaewunruen SakdiratORCID

Abstract

Most of the Artificial Intelligence (AI) models currently used in energy forecasting are traditional and deterministic. Recently, a novel deep learning paradigm, called ‘transformer’, has been developed, which adopts the mechanism of self-attention. Transformers are designed to better process and predict sequential data sets (i.e., historical time records) as well as to track any relationship in the sequential data. So far, a few transformer-based applications have been established, but no industry-scale application exists to build energy forecasts. Accordingly, this study is the world’s first to establish a transformer-based model to estimate the energy consumption of a real-scale university library and benchmark with a baseline model (Support Vector Regression) SVR. With a large dataset from 1 September 2017 to 13 November 2021 with 30 min granularity, the results using four historical electricity readings to estimate one future reading demonstrate that the SVR (an R2 of 0.92) presents superior performance than the transformer-based model (an R2 of 0.82). Across the sensitivity analysis, the SVR model is more sensitive to the input close to the output. These findings provide new insights into the research area of energy forecasting in either a specific building or a building cluster in a city. The influences of the number of inputs and outputs related to the transformer-based model will be investigated in the future.

Funder

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3