Failure Mode and Optimization for MSCSS with LRBs Based on IDA Method

Author:

Fan Buqiao,Zhang Xun’an,Xiao YanjieORCID,Abdulhadi MustaphaORCID,Wang Xinwei,Shahzad Muhammad MomanORCID

Abstract

The mega-sub controlled structure system with laminate rubber bearings is an emerging seismic control system for high-rise buildings. The system is high-order statically indeterminate with numerous failure modes. To study the failure modes of the structural system and further improve its seismic performance, the dynamic equations and the finite element model of the system were established. Ten different ground motions were selected from the Pacific Earthquake Engineering Research Center ground motion database for the incremental dynamic analysis (IDA). Based on the results of the IDA, the weakest failure mode of the system was identified, and its failure path was found. Two schemes were proposed to optimize the weakest failure mode of the system, and the optimization results were compared. The results show that although the IDA curves from different ground motion inputs are diverse, the plastic hinges are all formed on the sub-structures. Failures of the system are caused by either the excessive floor drift or the excessive shear deformation of rubber bearings. By adjusting the locations and parameters of dampers and rubber bearings, the seismic performance of the system can be improved.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3