Framework for a City’s Performance Assessment in the Case of an Earthquake

Author:

Koren David1ORCID,Rus Katarina1ORCID

Affiliation:

1. Faculty of Architecture, University of Ljubljana, 1000 Ljubljana, Slovenia

Abstract

A comprehensive assessment of a city’s vulnerability and resilience is a prerequisite for an effective response to a natural disaster, such as an earthquake. However, an appropriate method for assessing the seismic performance of a complex urban system is still being researched. To address this gap, the purpose of this paper is to introduce a method for seismic performance assessment of a city as a socio-physical system. Therefore, various studies of individual urban components and their interactions were combined into a holistic framework and presented in a case study of a small mid-European town. The seismic vulnerability of the building inventory was assumed or assessed based on the fragility curves adopted from the literature on similar European building stock. Seismic scenarios of different earthquake intensity (PGA of 0.15 g and 0.30 g) combined with conservative and risky approaches were applied. Considering the human perspective, urban performance was evaluated on the basis of accessibility to urban services that satisfy basic human needs (for survival and protection) via graph theory measures of global efficiency and the shortest path. The temporal aspect (before the earthquake, immediately after it, after evacuation, and after recovery) was also included to obtain a comprehensive resilience assessment. It turned out that a stronger earthquake (PGA of 0.30 g) would have far-reaching consequences for the urban performance of the investigated town, and the old city center would be particularly affected. Following the event, the system’s performance is less than half as effective compared to the initial level, indicating a sharp deterioration in the quality of life as reflected in the possibility of meeting basic human needs.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3