Development of an Ultra-High-Performance Fibre-Reinforced Concrete (UHPFRC) Manufacturable at Ambient Temperature

Author:

Tamataki Koji,Ito Tomoaki,Fujino Yutaka,Yoshitake IsamuORCID

Abstract

Ultra-high-performance fibre-reinforced concrete (UHPFRC) manufacturing typically requires heat curing. UHPFRC production at a ready-mixed concrete (RMC) plant is often difficult because specific equipment is required for heat curing. Concerns associated with ultra-high-performance concrete (UHPC) construction include the energy costs and environmental impacts of the heat curing and transportation from the factory to the construction site. Few studies have been conducted on the manufacturing of UHPFRC under standard curing conditions. The strength properties of UHPFRC manufactured under standard curing are typically poorer than those of UHPFRC manufactured under heat curing. The materials and mixture proportions required for the UHPFRC manufacturable under ambient temperature conditions were investigated. Five types of cement and four types of powder materials were tested, as well as the fine aggregate needed to achieve proper fluidity. This paper reports that the cement having low C3A and high C3S is suitable for the UHPFRC manufacturable at ambient temperatures; the allowable volume of fine aggregate was 600 kg/m3 for the UHPFRC having a proper dispersion of steel fibres; the highest water-binder ratio (W/B) of 21% was found for the UHPFRC cured under ambient temperature.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference18 articles.

1. Structural Behaviour of Elements Combining Ultra-High Performance Fibre Reinforced Concretes (UHPFRC) and Reinforced Concrete;Habel,2004

2. Ultra-High Performance Concretes;Rossi;Concr. Int.,2008

3. Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced Concrete Structures,2004

4. Ultra High Performance Fibre-Reinforced Concretes Recommendations,2013

5. Application Development of Ultra High Strength Fiber Reinforced Concrete for Pre-stressed Concrete Bridge

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3