Impact of Fibres on the Mechanical and Durable Behaviour of Fibre-Reinforced Concrete

Author:

More Florence More Dattu Shanker,Subramanian Senthil Selvan

Abstract

Numerous studies have been conducted recently on fibre reinforced concrete (FRC), a material that is frequently utilized in the building sector. The utilization of FRC has grown in relevance recently due to its enhanced mechanical qualities over normal concrete. Due to increased environmental degradation in recent years, natural fibres were developed and research is underway with the goal of implementing them in the construction industry. In this work, several natural and artificial fibres, including glass, carbon, steel, jute, coir, and sisal fibres are used to experimentally investigate the mechanical and durability properties of fibre-reinforced concrete. The fibres were added to the M40 concrete mix with a volumetric ratio of 0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%. The compressive strength of the conventional concrete and fibre reinforced concrete with the addition of 1.5% steel, 1.5% carbon, 1.0% glass, 2.0% coir, 1.5% jute and 1.5% sisal fibres were 4.2 N/mm2, 45.7 N/mm2, 41.5 N/mm2, 45.7 N/mm2, 46.6 N/mm2, 45.7 N/mm2 and 45.9 N/mm2, respectively. Comparing steel fibre reinforced concrete to regular concrete results in a 13.69% improvement in compressive strength. Similarly, the compressive strengths were increased by 3.24%, 13.69%, 15.92%, 13.68% and 14.18% for carbon, glass, coir, jute, and sisal fibre reinforced concrete respectively when equated with plain concrete. With the optimum fraction of fibre reinforced concrete, mechanical and durability qualities were experimentally investigated. A variety of durability conditions, including the Rapid Chloride Permeability Test, water absorption, porosity, sorptivity, acid attack, alkali attack, and sulphate attack, were used to study the behaviour of fiber reinforced concrete. When compared to conventional concrete, natural fibre reinforced concrete was found to have higher water absorption and sorptivity. The rate of acid and chloride attacks on concrete reinforced with natural fibres was significantly high. The artificial fibre reinforced concrete was found to be more efficient than the natural fibre reinforced concrete. The load bearing capacity, anchorage and the ductility of the concrete improved with the addition of fibres. According to the experimental findings, artificial fibre reinforced concrete can be employed to increase the structure’s strength and longevity as well as to postpone the propagation of cracks. A microstructural analysis of concrete was conducted to ascertain its morphological characteristics.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3