Horizontal Distribution of Temperature Effect in Rubberized Concrete Pavement: A Case Study

Author:

Zhang Gaowang1ORCID,Zhang Jiake1,Yuan Jie1,Ye Shijiang2

Affiliation:

1. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China

2. Shaanxi Provincial Transport Planning Design and Research Institute Co. Ltd., Xi’an 710065, China

Abstract

Temperature distribution and the deformation behavior under temperature are important parameters in the design and evaluation of concrete pavements. In this paper, in order to study the horizontal distribution of the temperature effect on rubberized concrete pavement (RCP), the distribution differences of temperature, temperature gradient and strain at different horizontal locations were analyzed based on fiber Bragg grating test technology. The relationships between temperature and strain and between temperature gradient and strain were also investigated. The results show that within a cycle of temperature or temperature gradient change, the time of temperature increase or temperature gradient increase is only 1/4 of the whole cycle, significantly less than the time of the temperature or temperature gradient decrease. Comparing the center, edges and corner of the pavement, the horizontal distribution of temperature and temperature gradients in the RCP is uneven, and the greatest negative temperature gradient is experienced at the corner of the pavement, which is 25 °C·m−1 greater than the temperature gradient at the center. The negative temperature gradient at the corner of the concrete pavement exacerbates the bottom deformation at the center and edge of the pavement, especially in the X-axis direction at the center and in the Y-axis and Z-axis directions at the edge. The relationships between temperature and horizontal strain at the center and edge of the RCP have a significant hysteresis effect and are markedly stronger than those at the corner. Moreover, when the temperature gradient is less than −23.4 °C·m−1 or greater than 14.5 °C·m−1, the curling effect at the edge of the RCP is more obvious.

Funder

National Key R&D Program of China

National Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3