Westergaard Curling Solution Reconsidered

Author:

Ioannides Anastasios M.1,Davis Craig M.1,Weber Christopher M.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Cincinnati, (ML-0071), P.O. Box 210071, Cincinnati, OH 45221-0071

Abstract

An in-depth and systematic examination is presented of the effect of temperature gradients on slab-on-grade pavements. The main objective for the examination was the development of practical design tools for use in a typical engineering office. This has been achieved by a critical reconsideration of the literature, a synthesis of currently available analytical resources, and the implementation of recent technological achievements promulgated in related areas of engineering. Prominent among these are the application of the principles of dimensional analysis, the finite element method, advanced statistical regression analysis, and artificial neural networks (ANN). A number of ANNs have been trained for the curling problem, and in several instances they are found to be more efficient predictive tools than corresponding statistical regression equations. It is found that the most important shortcomings of the Westergaard curling solution are the assumption of continuous contact between slab and subgrade (infinite slab self-weight) and the explicit treatment of only daytime conditions. Although Westergaard’s curling-only predictions are significantly inferior to those from ANN and statistics, his load-plus-curling predictions exhibit approximately the same scatter as those from these two more modern and nominally more sophisticated tools. The case of Westergaard’s curling solution can serve as an example pointing to the usefulness and desirability of theoretical solutions, even when these are achievable only on the basis of considerable abstraction and simplification.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference28 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3