A New Configuration of Roof Photovoltaic System for Limited Area Applications—A Case Study in KSA

Author:

Al-Quraan AymanORCID,Al-Mahmodi Mohammed,Al-Asemi Taha,Bafleh Abdulqader,Bdour MathharORCID,Muhsen HaniORCID,Malkawi AhmadORCID

Abstract

Increased world energy demand necessitates looking for appropriate alternatives to oil and fossil fuel. Countries encourage institutions and households to create their own photovoltaic (PV) systems to reduce spending money in electricity sectors and address environmental issues. Due to high solar radiation in the Kingdom of Saudi Arabia (KSA), the government urges people and institutions to establish PV systems as the best promising renewable energy resource in the country. This paper presents an optimal and complete design of a 300 kW PV system installed in a limited rooftop area to feed the needs of the Ministry of Electricity building, which has a high energy consumption. The design has been suggested for two scenarios in terms of adjusting the orientation angles. The available rooftop area allowed to be used is insufficient if a tilt angle of 22o is used, suggested by the designer, so the tilt angle has been adjusted from 22o to 15o to accommodate the available area and meet the required demand with a minimum shading effect. The authors of this paper propose a modified scenario “third scenario” which accommodates the available area and provides more energy than the installed “second scenario”. The proposed panel distribution and the estimated energy for all scenarios are presented in the paper. The possibility of changing tilt angles and the extent of energy production variations are also discussed. Finally, a comparative study between measured and simulated energy is included. The results show that August has the lowest percentage error, with a value of 2.7%, while the highest percentage error was noticed in November.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3