Biogas Upgradation by CO2 Sequestration and Simultaneous Production of Acetic Acid by Novel Isolated Bacteria

Author:

Upadhyay Apoorva1,Chawade Aakash2ORCID,Ikram Mohd Mohsin3ORCID,Saharan Virendra Kumar3,Pareek Nidhi4,Vivekanand Vivekanand1ORCID

Affiliation:

1. Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India

2. Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, 23053 Uppsala, Sweden

3. Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India

4. Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India

Abstract

Anaerobic digestion produces biogas, which is a proven bioprocess for generating energy, recovering nutrients, and reusing waste materials. Generally, the biogas generated contains methane (CH4) and carbon dioxide (CO2) in a 3:2 ratio, which limits the usage of the biogas to only cooking gas. To further enhance the application of biogas to vehicular fuel and natural gas grids, CO2 must be removed for an enhanced calorific value. This study seeks to lower greenhouse gas emissions by sequestering carbon dioxide from biogas. CO2 sequestration by microorganisms to upgrade the biogas and simultaneously convert the CO2 into acetic acid is a less explored area of research. Therefore, this research focuses mainly on the analysis of CO2 consumption % and acetic acid yield by novel isolated bacteria from fruit waste and mixed consortia obtained from cow dung and digested samples. The research finding states that there was a 32% increase in methane yield shown by isolated strain A1, i.e., CH4% was increased from 60% to 90%, whereas only an 11% increase was shown by consortia, which was an increase from 60% to 80%. The highest biogas upgradation was shown by the A1 strain at 30 °C incubation temperature and pH 8. The A1 strain demonstrated the highest recorded yield of acetic acid, reaching a concentration of 2215 mg/L at pH 8. A pH range of 7–8 was found to be the best-suited pH, and a mesophilic temperature was optimum for CO2 consumption and acetic acid production. The major objective is to create an effective method for improving biogas so that it is acceptable for different energy applications by lowering the carbon dioxide content and raising the methane content. This development signifies a significant advancement in the enhancement of biogas upgradation, as well as the concurrent generation of value-added goods, thereby establishing a sustainable platform technology.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3