Monitoring Axial Force Development in a Super-Long Pile during Construction Using BOFDA and Data Interpretation Approaches: A Case Study

Author:

Li Dongning,Ma Deshan,Su DongORCID,Rao Shaohua,Wang Wenbin,Hong ChengyuORCID

Abstract

Long-term monitoring data for super-long piles are scarce and valuable. This paper reports axial strain measurements of a cast-in-place large-diameter pile embedded 76.7 m into a “weathered trench” of granite in Nanshan District, Shenzhen, China, using BOFDA monitoring technology. An approach based on the load-transfer method to interpret data is proposed, in which the axial load at the pile head and the shear behavior at the pile–soil interface can be analyzed. Results show that these data can well reflect the increase in axial strain as the number of floors built increases, although there is deviation related to fiber cable bending due to the installation and compaction of concrete, and the complex loading condition at the pile head. Sensitivity analysis of parameters disclosed that the friction angle between the soil and the pile was approximately 10° for the cast-in-place pile monitored in this study, which is approximately one third of the interface friction angle, considering the slurry cake effect. The average axial force exerted on the pile head induced by building one floor ranged from 116.00 kN to 297.43 kN; this increased with the number of floors built and the total loads of the superstructure. This implies that the raft carried a large portion of the structural load during the early construction stage; piles gradually carried a major portion of the increased load due to continuous construction. The overall mobilized percentage of skin friction was approximately 40.8% when 40 floors were built, and the pile had the potential to carry more axial load.

Funder

the Natural Science Foundation of Shenzhen

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3