Effect of an Aluminosilicate Disperse Additive on Behaviors of Autoclave Silicate Materials

Author:

Nelubova Viktoriya,Strokova ValeriaORCID,Fediuk RomanORCID,Amran MugahedORCID,Vatin NikolaiORCID,Vasilev Yuriy

Abstract

In this research, a phase formation in CaO–SiO2–Al2O3–H2O binding system under hydrothermal conditions was studied. The novelty of this article lies in the quantitative full-profile X-ray diffraction (XRD) analysis used to determine kinetics of mineral formation in the binder system “lime–granite mineral modifier (GMM)”. The formation of a polymineral system is described in detail, as well as quantitative relationships between mineral composition of newly formed phases and the binding mixture ratios were determined. Phenomenological model of mineral formation in a “lime–GMM” system under hydrothermal conditions was proposed. The results obtained allow the demonstration of this binding system as a binder that is characterized by superposition of hydration and geopolymerization. The properties (strength, density, water absorption, porosity) of compressed autoclave-hardened materials with the addition of a granite modifier introduced instead of part of the sand as an aggregate have been studied. The maximum increase in strength (more than 50%) is observed at a modifier content of 15%. This is due to the formation of a rational composition of neoplasms, the compaction of the structure of the pressed products and the optimization of their pore space, which is confirmed by the data of X-ray diffraction analysis, scanning electron microscopy and the method of gas adsorption.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3