Assessment of Pozzolanic Activity of Ground Scoria Rocks under Low- and High-Pressure (Autoclave) Steam Curing

Author:

Fares GalalORCID,Alhozaimy Abdulrahman M.

Abstract

Two sources of natural scoria rocks were procured and ground for use in concrete as natural pozzolans (NP1 and NP2). The evaluation of their pozzolanic reactivity is carried out using different techniques and approaches. The primary goal of employing these techniques is to monitor the amount of portlandite (CH=Ca(OH)2) consumed during steam curing at low or high pressure. The pozzolanicity of NP powders is determined either directly by monitoring CH variation or indirectly by compressive strength and microstructure development. Autoclave curing is known to stimulate the pozzolanicity of the inert siliceous and aluminosiliceous materials under its high-pressure steam conditions. Both steam-curing conditions were applied in this investigation. In this study, X-ray diffraction, scanning electron microscope, thermogravimetric, Fourier transform infrared, and isothermal analyzers were used. It is concluded that the nature and types of minerals in SR determine their pozzolanic reactivity as either low-pressure steam-reactive or high-pressure steam-reactive cementitious materials. Due to the nature of their silicate structures, notably single-chain or 3D-framework structures, plagioclase feldspars (albite-anorthite) minerals are high-pressure steam-reactive minerals, whereas pyroxene (enstatite and diopside) minerals are low-pressure steam-reactive minerals. Using high-pressure steam curing, varied replacement levels of up to 60% were achieved in NP1, with a consistent strength activity index (SAI) of 99%, while an SAI of 79% was obtained with NP2. During low-pressure steam curing, NP1 and NP2 consumed around 72 and 80% of portlandite, respectively, demonstrating their relative pozzolanic reactivity. When compared to the control concrete mix, the strength activity indices of NP1, NP2, and class F fly ash in their normal concrete mixes reached 74.3, 82, and 73.7%, respectively, after 56 days of normal curing conditions.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3