Performance and Mechanism of Zn-Contaminated Soil through Microbe-Induced Calcium Carbonate Precipitation

Author:

Xing Wei1,Zhou Feng1,Zhu Rui1234,Wang Xudong1,Chen Tingzhu5

Affiliation:

1. School of Transportation Engineering, Nanjing Tech University, Nanjing 211816, China

2. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources of China, Fuzhou 350002, China

3. Key Laboratory of Geohazard, Fujian Province, Fuzhou 350002, China

4. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China

5. Nanjing Jiangbei New Area Public Utilities Holding Group Co., Ltd., Nanjing 210061, China

Abstract

Zn is a toxic heavy metal that seriously endangers human health and ecological stability. For a long time, traditional remediation techniques have been used to remediate Zn-contaminated soil prone to other problems such as secondary contamination. In recent years, due to the great danger posed by Zn pollution, there has been an increasing interest in applying eco-friendly and sustainable methods to remediate Zn-contaminated soil. Therefore, in this study, microbially induced calcium carbonate precipitation (MICP) technology was used to bioremediate zinc ions by transforming ionic heavy metals into insoluble solid-phase minerals. Through the unconfined compressive strength (UCS) test, direct shear (DS) test, and penetration test (PT), the results showed that the unconfined compressive strength of the treated specimens increased by 187.2~550.5%, the cohesion increased significantly compared with the internal friction angle of specimens, and the permeability coefficient can be reduced by at least one order of magnitude. During the treatment of Zn pollutants, the mobility of heavy metal zinc ions was significantly reduced, the percentage of exchangeable state Zn content was significantly reduced, and the leaching concentration of zinc ions in Zn-contaminated soil was reduced to about 20 mg/L, which was significantly lower than the limit in the standard (100 mg/L). These results were further confirmed by scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses, which indicated coprecipitation of calcium carbonate (CaCO3) and ZnCO3. The microbial solidification/stabilization of Zn-contaminated soil was most effective when the curing age of 28 d, the cementation solution concentration of 1 mol/L, and the cementation solution ratio of 1:2. Therefore, the bio-immobilization of zinc ions by MICP has the potential for application as a low-cost and eco-friendly method for heavy metal remediation.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Opening Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources

Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3