Properties of Concrete Columns Strengthened by CFRP-UHPC under Axial Compression

Author:

Wang Bo12,Liu Gejia1ORCID,Zhou Jiayu1

Affiliation:

1. School of Civil Engineering, Jilin Jianzhu University, Changchun 130118, China

2. Jilin Structural and Earthquake Resistance Technology Innovation Centre, Changchun 130118, China

Abstract

Ultra-high-performance concrete (UHPC) is a kind of structural material with ultra-high strength, extremely low porosity, and excellent durability, which has extremely broad application prospects. In order to promote the application of UHPC constrained by carbon fiber-reinforced polymer (CFRP) sheets as strengthening material in practical engineering, a total of nine specimens were designed, and two kinds of UHPC strengthening layer thickness (35 mm and 45 mm, respectively) were designed. By changing the constraint form of the UHPC strengthening layer (longitudinal reinforcements and ordinary stirrups, longitudinal reinforcements and spiral stirrups, and CFRP sheets, respectively), the axial compression performance of the strengthened column was explored. The study shows that compared with the without strengthened column, the uplift of carrying capacity of the strengthened test column is 277–561%. The reinforcement form of the strengthening layer has little influence on the lifting capacity. Among the three different strengthening methods, the wrapped CFRP has the best improvement effect on carrying capacity and ductility, followed by longitudinal reinforcements and spiral stirrups in the strengthening layer. With the increase of CFRP layers from two to five layers, the maximum carrying capacity increases by 21.3%. The carrying capacity of three different types of UHPC-strengthened columns is theoretically calculated, and the accuracy of the theoretical calculation method is verified by comparing the test value with the theoretical value, which provides a theoretical basis for the application of UHPC-strengthened columns in the future.

Funder

National key research and development program

National Natural Science Foundation of China

Jilin Province Innovation and Entrepreneurship Talent Funding Project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3