Experimental and Numerical Characterization of Non-Proprietary UHPFRC Beam—Parametric Analyses of Mechanical Properties

Author:

Osgouei Younes Baghaei1,Tafreshi Shahriar Tavousi2,Pourbaba Masoud3

Affiliation:

1. Department of Construction Engineering Management, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1477893780, Iran

2. Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1477893780, Iran

3. Department of Civil Engineering, Maragheh Branch, Islamic Azad University, Maragheh 5519747591, Iran

Abstract

Fabrication of ultra-high-performance concrete (UHPC) is costly, especially when commercial materials are used. Additionally, in contrast to conventional concrete, numerical procedures to simulate the behaviour of ultra-high-performance fibre-reinforced concrete (UHPFRC) are very limited. To contribute to the foregoing issues in this field, local materials were used in the fabrication process, while accounting for environmental issues and costs. Micro steel fibres (L: 13 mm, d: 0.16 mm, and ft: 2600 MPa; L: length, d: diameter, ft: tensile strength) were used in 2% volumetric ratios. Compression and indirect tests were carried out on cylindrical and prismatic beams according to international standards. To further enrich the research and contribute to the limited simulation data on UHPFRC, and better comprehension of the parameters, numerical analyses were performed using the ATENA software. Finally, nonlinear regression analyses were employed to capture the deflection-flexural response of the beams. The results were promising, indicating cost-effective fabrication using local materials that met the minimum requirements of UHFRC in terms of compressive strength. Furthermore, inverse analysis proved to be an easy and efficient method for capturing the flexural response of UHPFRC beams.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3