Barriers to BIM-Based Life Cycle Sustainability Assessment for Buildings: An Interpretive Structural Modelling Approach

Author:

Onososen AdetayoORCID,Musonda InnocentORCID

Abstract

With the emergence of Building Information Modelling (BIM) as central to construction design, planning, execution and maintenance, integration into the entire infrastructure sustainability process is imperative for achieving sustainable development. Despite its immense benefit of aiding compliance to sustainable construction, potential barriers continue to widen the gap in implementation. Therefore, this study adopts the “interpretive structural modelling approach” to advance a ranked structure of the interrelatedness of the barriers to integrating BIM in buildings sustainability assessment. The “Matrice d’Impacts croises-multipication applique a classement analysis (MICMAC)” was utilised to categorise the identified adoption barriers in the model. The identified barriers and relationship with themselves are valuable in discussing the challenges to BIM-based LCA and developing policies and design decisions to drive the process further. Further, it adds to the emerging discussion of BIM from the life cycle sustainability assessment perspective for infrastructure. The findings are critical for policy, stakeholders and extending the body of knowledge.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3