Assessing Life Cycle Environmental and Economic Impacts of Building Construction Solutions with BIM

Author:

Carvalho José PedroORCID,Villaschi Fernanda Schmitd,Bragança LuísORCID

Abstract

Worldwide authorities are increasingly concerned about construction’s efficiency and sustainability, leading to the development of high-performance buildings. However, such facts have shifted a significant percentage of the building life cycle environmental impacts from the operation to the product and construction phases. Thus, the need to evaluate and select more sustainable materials and construction solutions arises, to also minimize impacts from these stages. To evaluate those impacts, LCA and LCC analysis are usually applied to assess the building impacts and costs, through the different life cycle stages. Despite the usefulness of LCA and LCC methods during the project phase, they are usually evaluated in the project later stages. It is too complex and time-consuming to gather and process all the required data during the project early stages. With the recent deployment of BIM, the opportunity to automate and shift LCA and LCC analysis to project early stages stands out. Facing the research gap, this study aims to develop a BIM-based decision-making tool for designers to evaluate the environmental, economic, and functional performance of different building construction solutions. To do so, 18 different simulation scenarios have been created in Autodesk Revit with different combinations of external walls, roofs, and floors. Then, a framework was developed in Dynamo to automatically characterize the building elements life cycle environmental impacts and costs, as well as to automate the LCA and LCC analysis during the project early stages. The outcomes can significantly reduce the required time, errors and efforts when performing LCA and LCC analysis, providing designers with real time decision support data and making an important contribution to the use of BIM for sustainability purposes.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3