A Novel Safety Risk Assessment Based on Fuzzy Set Theory and Decision Methods in High-Rise Buildings

Author:

Ansari RaminORCID,Dehghani Parisa,Mahdikhani MahdiORCID,Jeong JaewookORCID

Abstract

The high-rise construction industry has particular features, such as prolonged construction periods and constant change in the workplace. These features may have turned it into the most dangerous industry, given its significant mortality rate. This research aims to identify effective criteria for high-rise buildings’ safety issues and rank the most critical risks to level up the safety of these projects. This research is divided into two phases: In Phase I, the effective criteria in the literature on the occurrence of accidents are divided into three main classes, and their weights are determined using the best–worst method. In Phase II, the existing risks are ranked using the fuzzy Vlse Kriterijumska Optimizacija Kompromisno Resenje (FUZZY VIKOR) method. The results indicate that safety training and monitoring, which account for approximately 35% of the total weight, are the most influential criteria for risk occurrence. The risk of falling from heights has been ranked first as the most critical safety risk according to the eight criteria, including safety training and monitoring. The total weight of criteria in which falling from height attains the first rank equals 0.688. Damages caused by working with manual tools and equipment have the highest priority in four criteria, and the total weight of 0.1591 attains the second rank. The results of this research comply with the current situation of the construction industry and pave the way for future research on high-rise construction projects.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference57 articles.

1. Critical success factors for safety management of high-rise building construction projects in China;Li;Adv. Civ. Eng.,2018

2. AHP_FCE-based high-rise building construction risk assessment;Li;IOP Conf. Ser. Mater. Sci. Eng.,2020

3. Evaluating the critical safety factors causing accidents in high-rise building projects;Manzoor;Ain Shams Eng. J.,2021

4. Assessing the safety risks affecting the health of individuals in high-rise projects with a fuzzy approach;Ardeshir;Occup. Health Iran,2014

5. Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies;Taylan;Appl. Soft Comput.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3