Abstract
The demand for categorising technology that requires minimum manpower and equipment is increasing because a large amount of waste is produced during the demolition and remodelling of a structure. Considering the latest trend, applying an artificial intelligence (AI) model for automatic categorisation is the most efficient method. However, it is difficult to apply this technology because research has only focused on general domestic waste. Thus, in this study, we delineate the process for developing an AI model that differentiates between various types of construction waste. Particularly, solutions for solving difficulties in collecting learning data, which is common in AI research in special fields, were also considered. To quantitatively increase the amount of learning data, the Fréchet Inception Distance method was used to increase the amount of learning data by two to three times through augmentation to an appropriate level, thus checking the improvement in the performance of the AI model.
Funder
National Research Foundation of Korea
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献