Development of an Artificial Intelligence Model to Recognise Construction Waste by Applying Image Data Augmentation and Transfer Learning

Author:

Na SeungukORCID,Heo SeokjaeORCID,Han SeheeORCID,Shin Yoonsoo,Lee Myeunghun

Abstract

The demand for categorising technology that requires minimum manpower and equipment is increasing because a large amount of waste is produced during the demolition and remodelling of a structure. Considering the latest trend, applying an artificial intelligence (AI) model for automatic categorisation is the most efficient method. However, it is difficult to apply this technology because research has only focused on general domestic waste. Thus, in this study, we delineate the process for developing an AI model that differentiates between various types of construction waste. Particularly, solutions for solving difficulties in collecting learning data, which is common in AI research in special fields, were also considered. To quantitatively increase the amount of learning data, the Fréchet Inception Distance method was used to increase the amount of learning data by two to three times through augmentation to an appropriate level, thus checking the improvement in the performance of the AI model.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference48 articles.

1. World Bank Open Datahttps://data.worldbank.org

2. Economic Statistics Systemhttps://ecos.bok.or.kr/EIndex_en.jsp

3. Intergovernmental Panel on Climate Change, Global warming of 1.5Cwww.ipcc.ch/sr15/download/#chapter

4. Construction Waste Reduction through Application of Different Structural Systems for the Slab in a Commercial Building: A South Korean Case

5. The classification of construction waste material using a deep convolutional neural network

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3