Microplastics Exacerbate Cadmium-Induced Kidney Injury by Enhancing Oxidative Stress, Autophagy, Apoptosis, and Fibrosis

Author:

Zou Hui,Chen Yan,Qu Huayi,Sun Jian,Wang Tao,Ma Yonggang,Yuan Yan,Bian JianchunORCID,Liu ZongpingORCID

Abstract

Cadmium (Cd) is a potential pathogenic factor in the urinary system that is associated with various kidney diseases. Microplastics (MPs), comprising of plastic particles less than 5 mm in diameter, are a major carrier of contaminants. We applied 10 mg/L particle 5 μm MPs and 50 mg/L CdCl2 in water for three months in vivo assay to assess the damaging effects of MPs and Cd exposure on the kidney. In vivo tests showed that MPs exacerbated Cd-induced kidney injury. In addition, the involvement of oxidative stress, autophagy, apoptosis, and fibrosis in the damaging effects of MPs and Cd on mouse kidneys were investigated. The results showed that MPs aggravated Cd-induced kidney injury by enhancing oxidative stress, autophagy, apoptosis, and fibrosis. These findings provide new insights into the toxic effects of MPs on the mouse kidney.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3