A Comparative Characterization and Expression Profiling Analysis of Fructokinase and Fructokinase-like Genes: Exploring Their Roles in Cucumber Development and Chlorophyll Biosynthesis

Author:

Fan Lianxue,Zhang Wenshuo,Xu Zhuo,Li Shengnan,Liu Dong,Wang Lili,Zhou Xiuyan

Abstract

Fructokinase (FRK) and fructokinase-like (FLN), belonging to the phosphofructokinase B type subfamily, share substantial sequence similarity, and are crucial in various plant physiological processes. However, there is limited information regarding what functionally differentiates plant FRKs from FLNs. Here, a total of three CsFRKs and two CsFLNs were identified from the cucumber genome. Their significant difference lay in the structure of their G/AXGD motif, which existed as GAGD in CsFRKs, but as G/ASGD in CsFLNs. Comparative phylogenetic analysis classified CsFRKs and CsFLNs into five sub-branches consistent with their quite different exon/intron organizations. Both transcriptome data and RT-qPCR analyses revealed that CsFRK3 was the most active gene, with the highest expression in the majority of tissues tested. Moreover, the expression levels of two putative plastidic genes, CsFRK1 and CsFLN2, were significantly positively associated with chlorophyll accumulation in the chlorophyll-reduced cucumber mutant. Briefly, both CsFRK and CsFLN genes were involved in the development of sink tissues, especially CsFRK3. CsFRK1 and CsFLN2 were recognized as candidates in the chlorophyll biosynthesis pathway of cucumber. These results would greatly assist in further investigation on functional characterization of FRKs and FLNs, especially in the development and chlorophyll biosynthesis of cucumber.

Funder

Natural Science Foundation of Heilongjiang Province of China

Academic Backbone Plan of Northeast Agricultural University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3