Alkaline α-galactosidase 2 (CsAGA2) plays a pivotal role in mediating source–sink communication in cucumber

Author:

Liu Huan1ORCID,Liu Xin23,Zhao Yalong1ORCID,Nie Jing1,Yao Xuehui1ORCID,Lv Lijun1,Yang Junwei1,Ma Ning1,Guo Yicong1,Li Yaxin1ORCID,Yang Xueyong2ORCID,Lin Tao1ORCID,Sui Xiaolei1ORCID

Affiliation:

1. Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University , Beijing 100193, China

2. Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences , Beijing 100081, China

3. Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences , Shenzhen, Guangdong 518120, China

Abstract

Abstract Sugars are necessary for plant growth and fruit development. Cucumber (Cucumis sativus L.) transports sugars, mainly raffinose family oligosaccharides (RFOs), in the vascular bundle. As the dominant sugars in cucumber fruit, glucose and fructose are derived from sucrose, which is the product of RFO hydrolysis by α-galactosidase (α-Gal). Here, we characterized the cucumber alkaline α-galactosidase 2 (CsAGA2) gene and found that CsAGA2 has undergone human selection during cucumber domestication. Further experiments showed that the expression of CsAGA2 increases gradually during fruit development, especially in fruit vasculature. In CsAGA2-RNA interference (RNAi) lines, fruit growth was delayed because of lower hexose production in the peduncle and fruit main vascular bundle (MVB). In contrast, CsAGA2-overexpressing (OE) plants displayed bigger fruits. Functional enrichment analysis of transcriptional data indicated that genes related to sugar metabolism, cell wall metabolism, and hormone signaling were significantly downregulated in the peduncle and fruit MVBs of CsAGA2-RNAi plants. Moreover, downregulation of CsAGA2 also caused negative feedback regulation on source leaves, which was shown by reduced photosynthetic efficiency, fewer plasmodesmata at the surface between mesophyll cell and intermediary cell (IC) or between IC and sieve element, and downregulated gene expression and enzyme activities related to phloem loading, as well as decreased sugar production and exportation from leaves and petioles. The opposite trend was observed in CsAGA2-OE lines. Overall, we conclude that CsAGA2 is essential for cucumber fruit set and development through mediation of sugar communication between sink strength and source activity.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing Innovation Consortium of Agriculture Research System

China Agriculture Research System of MOF and MARA

111 Project of Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3