Relationship between the Responsiveness of Amyloid β Protein to Platelet Activation by TRAP Stimulation and Brain Atrophy in Patients with Diabetes Mellitus

Author:

Hori TakamitsuORCID,Mizutani Daisuke,Onuma Takashi,Okada Yu,Kojima Kumi,Doi Tomoaki,Enomoto Yukiko,Iida Hiroki,Ogura Shinji,Sakurai Takashi,Iwama Toru,Kozawa Osamu,Tokuda Haruhiko

Abstract

Type 2 DM is a risk factor for dementia, including Alzheimer’s disease (AD), and is associated with brain atrophy. Amyloid β protein (Aβ) deposition in the brain parenchyma is implicated in the neurodegeneration that occurs in AD. Platelets, known as abundant storage of Aβ, are recognized to play important roles in the onset and progression of AD. We recently showed that Aβ negatively regulates platelet activation induced by thrombin receptor-activating protein (TRAP) in healthy people. In the present study, we investigated the effects of Aβ on the TRAP-stimulated platelet activation in DM patients, and the relationship between the individual responsiveness to Aβ and quantitative findings of MRI, the volume of white matter hyperintensity (WMH)/intracranial volume (IC) and the volume of parenchyma (PAR)/IC. In some DM patients, Aβ reduced platelet aggregation induced by TRAP, while in others it was unchanged or rather enhanced. The TRAP-induced levels of phosphorylated-Akt and phosphorylated-HSP27, the levels of PDGF-AB and the released phosphorylated-HSP27 correlated with the degree of platelet aggregability. The individual levels of not WMH/IC but PAR/IC was correlated with those of TRAP-stimulated PDGF-AB release. Collectively, our results suggest that the reactivity of TRAP-stimulated platelet activation to Aβ differs in DM patients from healthy people. The anti-suppressive feature of platelet activation to Aβ might be protective for brain atrophy in DM patients.

Funder

National Center for Geriatrics and Gerontology, Japan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3