Anomaly Detection for Hydraulic Power Units—A Case Study

Author:

Fic Paweł1ORCID,Czornik Adam1ORCID,Rosikowski Piotr2

Affiliation:

1. Department of Automatic Control and Robotics, Silesian University of Technology, 44-100 Gliwice, Poland

2. PONAR Wadowice S.A., Św. Jana Pawła II 10, 43-170 Łaziska Górne, Poland

Abstract

This article aims to present the real-world implementation of an anomaly detection system of a hydraulic power unit. Implementation involved the Internet of Things approach. A detailed description of the system architecture is provided. The complete path from sensors through PLC and the edge computer to the cloud is presented. Some technical information about hydraulic power units is also given. This article involves the description of several model-at-scale deployment techniques. In addition, the approach to the synthesis of anomaly and novelty detection models was described. Anomaly detection of data acquired from the hydraulic power unit was carried out using two approaches, statistical and black-box, involving the One Class SVM model. The costs of cloud resources and services that were generated in the project are presented. Since the article describes a commercial implementation, the results have been presented as far as the formal and business conditions allow.

Funder

Polish Ministry of Science and Higher Education Program “Doktorat wdrożeniowy”

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3