Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127. https://doi.org/10.1561/2200000006
2. Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: Proceedings of the 3rd international conference on knowledge discovery and data mining, pp 359–370
3. Canizo M, Triguero I, Conde A, Onieva E (2019) Multi-head CNN–RNN for multi-time series anomaly detection: an industrial case study. Neurocomputing 363:246–260. https://doi.org/10.1016/j.neucom.2019.07.034
4. Chan PK, Mahoney MV (2005) Modeling multiple time series for anomaly detection. In: Fifth IEEE international conference on data mining (ICDM’05), vol 8. https://doi.org/10.1109/ICDM.2005.101
5. Chen Z, Chen D, Zhang X, Yuan Z, Cheng X (2022) Learning graph structures with transformer for multivariate time-series anomaly detection in IoT. IEEE Internet Things J 9(12):9179–9189. https://doi.org/10.1109/JIOT.2021.3100509