RSSI and Device Pose Fusion for Fingerprinting-Based Indoor Smartphone Localization Systems

Author:

Khan Imran Moez1,Thompson Andrew2,Al-Hourani Akram1ORCID,Sithamparanathan Kandeepan1ORCID,Rowe Wayne S. T.1ORCID

Affiliation:

1. College of Science, Technology, Engineering and Mathematics, RMIT University, Melbourne, VIC 3000, Australia

2. Robert Bosch Australia & New Zealand, Melbourne, VIC 3168, Australia

Abstract

Complementing RSSI measurements at anchors with onboard smartphone accelerometer measurements is a popular research direction to improve the accuracy of indoor localization systems. This can be performed at different levels; for example, many studies have used pedestrian dead reckoning (PDR) and a filtering method at the algorithm level for sensor fusion. In this study, a novel conceptual framework was developed and applied at the data level that first utilizes accelerometer measurements to classify the smartphone’s device pose and then combines this with RSSI measurements. The framework was explored using neural networks with room-scale experimental data obtained from a Bluetooth low-energy (BLE) setup. Consistent accuracy improvement was obtained for the output localization classes (zones), with an average overall accuracy improvement of 10.7 percentage points for the RSSI-and-device-pose framework over that of RSSI-only localization.

Funder

Australian Government, Department of Industry, Innovation and Science

Australian Government Research Training Program

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3