Indoor Localization System Based on RSSI-APIT Algorithm

Author:

Shen Xiaoyan12ORCID,Xu Boyang12,Shen Hongming1ORCID

Affiliation:

1. School of Information Science and Technology, Nantong University, Nantong 226019, China

2. Nantong Research Institute for Advanced Communication Technologies, Nantong University, Nantong 226019, China

Abstract

An indoor localization system based on the RSSI-APIT algorithm is designed in this study. Integrated RSSI (received signal strength indication) and non-ranging APIT (approximate perfect point-in-triangulation test) localization methods are fused with machine learning in order to improve the accuracy of the indoor localization system. The system focuses on the improvement of preprocessing and localization algorithms. The primary objective of the system is to enhance the preprocessing of the acquired RSSI data and optimize the localization algorithm in order to enhance the precision of the coordinates in the indoor localization system. In order to mitigate the issue of significant fluctuations in RSSI, a technique including the integration of Gaussian filtering and an artificial neural network (ANN) is employed. This approach aims to preprocess the acquired RSSI data, thus reducing the impact of multipath effects. In order to address the issue of low localization accuracy encountered by the conventional APIT localization algorithm during wide-area localization, the RSSI ranging function is incorporated into the APIT localization algorithm. This addition serves to further narrow down the localization area. Consequently, the resulting localization algorithm is referred to as the RSSI-APIT positioning algorithm. Experimental results have demonstrated the successful reduction of inherent localization errors within the system by employing the RSSI-APIT positioning algorithm. The present study aims to investigate the impact of the localization scene and the number of anchors on the RSSI-APIT localization algorithm, with the objective of enhancing the performance of the indoor localization system. The conducted experiments demonstrated that the enhanced system exhibits several advantages. Firstly, it successfully decreased the frequency of anchor calls, resulting in a reduction in the overall operating cost of the system. Additionally, it effectively enhanced the accuracy and stability of the system’s localization capabilities. In a complex environment of 100 m2 in size, compared with the traditional trilateral localization method and the APIT localization algorithm, the RSSI-APIT localization algorithm reduced the localization error by about 2.9 m and 1.8 m, respectively, and the overall error was controlled within 1.55 m.

Funder

“Six Talent Peaks” Project, China

Nantong Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3