Characteristics of Nanoparticles in Late Pliocene Paleo-Mountain Fire Relics in Jinsuo Basin, Yunnan Province and Their Implications for Paleoclimate Evolution

Author:

Zhang Peng1,Liu Bangjun2ORCID,Wang Yaqin1,Zuo Lei1,Liu Rui1ORCID,Wang Jialong3,Wang Ru1

Affiliation:

1. School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China

2. School of Earth Science and Engineering, Hebei University of Engineering, Handan 056038, China

3. College of Earth Sciences, Guilin University of Technology, Guilin 541000, China

Abstract

Wildfires significantly affect climate and environmental changes, closely tied to extreme weather responses. Vegetation combustion emits greenhouse gases (CO2, CH4, CO), warming the climate. Climate shifts, in turn, impact vegetation growth, altering combustible material types and quantities, thus affecting wildfire intensity, duration, and frequency. Wildfires profoundly affect ecosystems, influenced by factors like atmospheric oxygen and climate. Their combustion gases impact climate and vegetation growth. Recent advancements in studying ancient wildfires include analyzing nanoparticles as key indicators. This study discovered six types of nanoparticles in ancient wildfire remains, with sizes ranging from 50 nm to 500 nm and diverse compositions including elements such as C, O, Mg, Al, Ti, Fe, S, Ca, and P. These findings indicate that wildfires generate a variety of nanoparticles, offering new insights into ancient fire events. Elemental analysis revealed low magnesium but high calcium and aluminum levels, suggesting a warm, humid paleoclimate during these fires. The presence of high Ti-O ratios and carbon-rich nanoparticles points to ground fires with incomplete combustion. This research underscores the significance of nanoparticles in understanding the history and characteristics of ancient wildfires.

Funder

National Natural Science Foundation of China

Shandong Province Natural Science Foundation

SDUT & Zibo City Integration Development Project

Publisher

MDPI AG

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3