Microneedle-Based Glucose Sensor Platform: From Vitro to Wearable Point-of-Care Testing Systems

Author:

Ju Jian,Li Lin,Regmi SagarORCID,Zhang Xinyu,Tang Shixing

Abstract

Significant advanced have recently been made in exploiting microneedle-based (MN-based) diabetes devices for minimally invasive wearable biosensors and for continuous glucose monitoring. Within this emerging class of skin-worn MN-based sensors, the ISF can be utilized as a rich biomarker source to diagnose diabetes. While initial work of MN devices focused on ISF extraction, the recent research trend has been oriented toward developing in vivo glucose sensors coupled with optical or electrochemical (EC) instrumentation. This outlook highlights the essential characteristics of the sensing mechanisms, rational design, sensing properties, and applications. Finally, we describe the opinions about the challenge and prospects of optical and EC MN-based device platforms for the fabrication of wearable biosensors and their application potential in the future.

Funder

the start-up grant of Wenzhou Institute, University of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3