Novel Approach for the Immobilization of Cellobiose Dehydrogenase in PEDOT:PSS Conductive Layer on Planar Gold Electrodes

Author:

Cihan Esra12,Melnik Eva1ORCID,Kurzhals Steffen1ORCID,Plata Paulina12ORCID,Mutinati Giorgio C.1ORCID,Hainberger Rainer1,Felice Alfons K.G.3,Schulz Christopher3,Lieberzeit Peter2ORCID

Affiliation:

1. Competence Unit Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria

2. Department of Physical Chemistry, University of Vienna, 1010 Vienna, Austria

3. DirectSens GmbH, 3400 Klosterneuburg, Austria

Abstract

Third-generation biosensors use enzymes capable of direct electron transfer (DET) to the sensor surface. They are of interest for continuous glucose monitoring in blood or interstitial fluid, but they are rarely investigated. One reason is the hindered DET of the enzymes to the metallic electrodes. In this publication, a novel method for the immobilization of cellobiose dehydrogenase (CDH) DET enzymes employing conductive poly(3,4-ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT:PSS) inks and a protective polyethylene glycol dimethacrylate (PEG-DMA) hydrogel layer on gold electrodes is reported. This layer stack showed a glucose-specific current response for voltages between −0.2 and 0.4 V in physiological PBS buffer, and enabled interference-less sensing in a solution of acetaminophen, ascorbic acid, dopamine, and uric acid at 0 V. A Michaelis–Menten fit led to a maximum current density (Imax) of 257 ± 7.9 nA/mm2 and a Michaelis–Menten constant (Km) of 28.4 ± 2.2 mM, with a dynamic range of 0.1–20 mM glucose and a limit of detection of 0.1 mM. After 16 h of continuous measurement of 20 mM glucose, the signal decreased to 60% of its initial value. Storage stability was successfully verified until up to 10 days. In summary, this paper shows a simplified approach for the fabrication of third-generation biosensors using CDH-PEDOT:PSS and PEG-DMA hydrogel inks.

Funder

Austrian Research Promotion Agency

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3