A Novel Ultra-Compact FPGA PUF: The DD-PUF

Author:

Della Sala RiccardoORCID,Bellizia DavideORCID,Scotti GiuseppeORCID

Abstract

In this paper, we present a novel ultra-compact Physical Unclonable Function (PUF) architecture and its FPGA implementation. The proposed Delay Difference PUF (DD-PUF) is the most dense FPGA-compatible PUF ever reported in the literature, allowing the implementation of two PUF bits in a single slice and provides very good values for all the most important figures of merit. The architecture of the proposed PUF exploits the delay difference between two nominally identical signal paths and the metastability features of D-Latches with an asynchronous reset input. The DD-PUF has been implemented on both Xilinx Spartan-6 and Artix-7 devices and the resulting design flows which allow to accurately balance the nominal delay of the different signal paths is outlined. The circuits have been extensively tested under temperature and supply voltage variations and the results of our evaluations on both FPGA families have shown that the proposed architecture and implementation are able to fit in just 32 Configurable Logic Blocks (CLBs) without sacrificing steadiness, uniqueness and uniformity, thus outperforming most of the previously published FPGA-compatible PUFs.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Reference37 articles.

1. PUFs at a glance

2. Physical Unclonable Functions in Theory and Practice;Böhm,2012

3. Physically Unclonable Functions: From Basic Design Principles to Advanced Hardware Security Applications;Halak,2018

4. PUF-RAKE: A PUF-based Robust and Lightweight Authentication and Key Establishment Protocol

5. A PUF-Enabled Secure Architecture for FPGA-Based IoT Applications

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3