A Memory Hierarchy Protected against Side-Channel Attacks

Author:

Talaki Ezinam Bertrand,Savry Olivier,Bouvier Des Noes Mathieu,Hely DavidORCID

Abstract

In the vulnerability analysis of System on Chips, memory hierarchy is considered among the most valuable element to protect against information theft. Many first-order side-channel attacks have been reported on all its components from the main memory to the CPU registers. In this context, memory hierarchy encryption is widely used to ensure data confidentiality. Yet, this solution suffers from both memory and area overhead along with performance losses (timing delays), which is especially critical for cache memories that already occupy a large part of the spatial footprint of a processor. In this paper, we propose a secure and lightweight scheme to ensure the data confidentiality through the whole memory hierarchy. This is done by masking the data in cache memories with a lightweight mask generator that provides masks at each clock cycle without having to store them. Only 8-bit Initialization Vectors are stored for each mask value to enable further recomputation of the masks. The overall security of the masking scheme is assessed through a mutual information estimation that helped evaluate the minimum number of attack traces needed to succeed a profiling side-channel attack to 592 K traces in the attacking phase, which provides an acceptable security level in an analysis where an example of Signal to Noise Ratio of 0.02 is taken. The lightweight aspect of the generator has been confirmed by a hardware implementation that led to resource utilization of 400 LUTs.

Funder

“Programme Investissement d’Avenir IRT Nanoelec” ANR-10-AIRT-05.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Software

Reference42 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Memory architecture to mitigate side channel attacks for cryptographic application using loop cut technique;Microelectronics Journal;2024-10

2. A High-Performance Transparent Memory Data Encryption and Authentication Scheme Based on Ascon Cipher;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2024-05

3. Development of Secure Hardware Architectures for Preventing Side-Channel Attacks and Protecting Sensitive Data in VLSI Systems;2023 4th International Conference on Smart Electronics and Communication (ICOSEC);2023-09-20

4. Leakage Power Attack and Half Select Issue Resilient Split 8T SRAM Cell;2023 21st IEEE Interregional NEWCAS Conference (NEWCAS);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3