Polyester and Epoxy Resins with Increased Thermal Conductivity and Reduced Surface Resistivity for Applications in Explosion-Proof Enclosures of Electrical Devices

Author:

Szymiczek MałgorzataORCID,Buła DawidORCID

Abstract

Composite materials are still finding new applications that require the modification of various properties and are characterized by the summary impact on selected operational features. Due to the operating conditions of electrical equipment enclosures in potentially explosive atmospheres, the surface resistivity ensuring anti-electrostatic properties, i.e., below 109 Ω and resistance to the flame while maintaining appropriate operational enclosure properties is very important. It is also crucial to dissipate heat while reducing weight. Currently metal or cast-iron enclosures are used for various types of electrical devices. As part of the work, a material that can be used for a composite matrix for the enclosure was developed. The study aimed to assess the influence of selected fillers and chemical modifications on the thermal conductivity coefficient, resistivity, and strength properties of matrix materials for the production of electrical device enclosures used in the mining industry. Selected resins were modified with graphite, copper, and carbon black. Tests were carried out on the coefficient of thermal conductivity, surface resistivity, flammability, and flexural strength. At the final stage of the work, a multi-criteria analysis was carried out, which allowed the selection of a composite that meets the assumed characteristics to the highest degree. It is a vinyl ester composite modified with 15 wt.% MG394 and 5 wt.% MG1596 graphite (W2). The thermal conductivity of composite W2 is 5.64 W/mK, the surface resistivity is 5.2 × 103 Ω, the flexural strength is 50.61 MPa, and the flammability class is V0.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3