Author:
Pang Qiu,Zhao Man,Hu Zhi-Li
Abstract
Friction stir welding (FSW) of aluminum alloys is an advanced manufacturing technology to realize lightweight bodywork. However, most studies only focus on the mechanical properties and corrosion behaviors of the welded joints. The effect of deformation on the corrosion behavior of FSWed joints is unclear. In this work, the plastic deformation behavior was characterized using uniaxial tensile tests. The effect of deformation on the corrosion behavior of a 2024 aluminum alloy nugget was studied by using a Tafel polarization curve, electrochemical impedance spectroscopy, exfoliation corrosion test, scanning electron microscopy and energy dispersive spectrometer, and transmission electron microscopy. The results show that the corrosion resistance of FSWed joints with different deformation degrees can be ranked as: 0% > 7% > 10% > 4%, and an “inflection point” appears at 7%. The corrosion potential and current density at 7% are near the values at 0%, and the 7% sample shows less corrosion rate than all other deformation samples. Only pitting and bubbling occur in the sample in 96 h. With an increase in plastic deformation, the dislocations and dislocation rings increase, there is an increase in the surrounding winding precipitates. The impurity phase is cleaved by dislocations; a reduction in the size of the impurity phase with low chemical activity can be observed, resulting in an increase in corrosion resistance. However, the transgranular and intergranular cracks appear on the 10% deformation sample. They almost always develop along the grain boundaries after initiation, making them more susceptible to corrosion.
Funder
National Natural Science Foundation of China
Scientific Research Project of Education Department of Hubei Province
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献