Influence of temperature and plastic deformation on AA2024 T3 friction stir welded joint microstructure

Author:

Veljic Darko1,Radovic Nenad2ORCID,Rakin Marko2,Sedmak Aleksandar3ORCID,Medjo Bojan2,Mrdak Mihailo1ORCID,Bajic Darko4ORCID

Affiliation:

1. Innovation Center, Faculty of Technology and Metallurgy, Belgrade, Serbia

2. Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

3. Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia

4. Faculty of Mechanical Engineering, University of Montenegro, Montenegro

Abstract

This paper deals with analysis and comparison of the equivalent plastic strain and temperature fields in the aluminium alloy 2024 T3 (AA2024 T3) joint, with macro/microstructure appearance and hardness profile. In the alloys hardened by heat treatment, grain size and particle size of the precipitate are functions of equivalent plastic strain, strain rate and temperature. By analysing the equivalent plastic strain fields and temperature fields it is possible, to some extent, to capture the effect of welding parameters and thermo-mechanical conditions on grain structure, and therefore hardness and strength in the welded joint. A coupled thermo-mechanical model is applied to study the material behaviour during the linear welding stage of friction stir welding. The 3-D finite element model has been created in ABAQUS/EXPLICIT software using the Johnson-Cook material law. The values of thermo-mechanical quantities during the welding stage are obtained from the numerical model and shown as distributions across the joint. The obtained values of these quantities are related to the microstructure of the joint zones and hardness distribution, and this relation is discussed.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3