Thermal and Mechanical Properties of Amorphous Silicon Carbide Thin Films Using the Femtosecond Pump-Probe Technique

Author:

Kim Yun YoungORCID

Abstract

Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young’s modulus by 13.6–78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young’s modulus was not significant.

Funder

Chungnam National University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3