A Study on the Essential and Parkinson’s Arm Tremor Classification

Author:

Skaramagkas VasileiosORCID,Andrikopoulos GeorgeORCID,Kefalopoulou Zinovia,Polychronopoulos PanagiotisORCID

Abstract

In this article, the challenge of discriminating between essential and Parkinson’s tremor is addressed. Although a variety of methods have been proposed for diagnosing the severity of these highly occurring tremor types, their rapid and effective identification, especially in their early stages, proves particularly difficult and complicated due to their wide range of causes and similarity of symptoms. To this goal, a clinical analysis was performed, where a number of volunteers including essential and Parkinson’s tremor-diagnosed patients underwent a series of pre-defined motion patterns, during which a wearable sensing setup was used to measure their lower arm tremor characteristics from multiple selected points. Extracted features from the acquired accelerometer signals were used to train classification algorithms, including decision trees, discriminant analysis, support vector machine (SVM), K-nearest neighbor (KNN) and ensemble learning algorithms, for providing a comparative study and evaluating the potential of utilizing machine learning to accurately discriminate among different tremor types. Overall, SVM related classifiers proved to be the most successful in terms of classifying between Parkinson’s, essential and no tremor diagnosed with percentages reaching up to 100% for a single accelerometer measurement at the metacarpal area. In general and in motion while holding an object position, Coarse Gaussian SVM classifier reached 82.62% accuracy.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3