Abstract
Background
Parkinson disease (PD) affects millions globally, causing motor function impairments. Early detection is vital, and diverse data sources aid diagnosis. We focus on lower arm movements during keyboard and trackpad or touchscreen interactions, which serve as reliable indicators of PD. Previous works explore keyboard tapping and unstructured device monitoring; we attempt to further these works with structured tests taking into account 2D hand movement in addition to finger tapping. Our feasibility study uses keystroke and mouse movement data from a remotely conducted, structured, web-based test combined with self-reported PD status to create a predictive model for detecting the presence of PD.
Objective
Analysis of finger tapping speed and accuracy through keyboard input and analysis of 2D hand movement through mouse input allowed differentiation between participants with and without PD. This comparative analysis enables us to establish clear distinctions between the two groups and explore the feasibility of using motor behavior to predict the presence of the disease.
Methods
Participants were recruited via email by the Hawaii Parkinson Association (HPA) and directed to a web application for the tests. The 2023 HPA symposium was also used as a forum to recruit participants and spread information about our study. The application recorded participant demographics, including age, gender, and race, as well as PD status. We conducted a series of tests to assess finger tapping, using on-screen prompts to request key presses of constant and random keys. Response times, accuracy, and unintended movements resulting in accidental presses were recorded. Participants performed a hand movement test consisting of tracing straight and curved on-screen ribbons using a trackpad or mouse, allowing us to evaluate stability and precision of 2D hand movement. From this tracing, the test collected and stored insights concerning lower arm motor movement.
Results
Our formative study included 31 participants, 18 without PD and 13 with PD, and analyzed their lower limb movement data collected from keyboards and computer mice. From the data set, we extracted 28 features and evaluated their significances using an extra tree classifier predictor. A random forest model was trained using the 6 most important features identified by the predictor. These selected features provided insights into precision and movement speed derived from keyboard tapping and mouse tracing tests. This final model achieved an average F1-score of 0.7311 (SD 0.1663) and an average accuracy of 0.7429 (SD 0.1400) over 20 runs for predicting the presence of PD.
Conclusions
This preliminary feasibility study suggests the possibility of using technology-based limb movement data to predict the presence of PD, demonstrating the practicality of implementing this approach in a cost-effective and accessible manner. In addition, this study demonstrates that structured mouse movement tests can be used in combination with finger tapping to detect PD.
Subject
Health Informatics,Medicine (miscellaneous)
Reference68 articles.
1. StatisticsParkinson's Foundation2023-09-21https://www.parkinson.org/understanding-parkinsons/statistics
2. Parkinson diseaseWorld Health Organization2023-09-21https://www.who.int/news-room/fact-sheets/detail/parkinson-disease
3. The daily lives of people with Parkinson's disease
4. The burden of Parkinson's disease: a worldwide perspective
5. Association of periodic limb movements during sleep and Parkinson disease
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献