Assessing Variations in Water Use Efficiency and Linkages with Land-Use Changes Using Three Different Data Sources: A Case Study of the Yellow River, China

Author:

Sun HuaiweiORCID,Chen LinORCID,Yang Yong,Lu Mengge,Qin HuiORCID,Zhao Bingqian,Lu Mengtian,Xue Jie,Yan Dong

Abstract

The dependence of water use efficiency (WUE) on changes in land cover types is crucial for understanding of long-term water availability and assessment of water-saving strategies. Investigating the impact of land cover types on ecosystem WUE has important implications when revealing water dynamics and land management. However, the determination of WUE and its dominant factors have always been subject to high data dependency and large calculation consumption within large basins. This paper proposes a framework for processing actual evapotranspiration (AET) and WUE calculation by coupling the Maximum Entropy Production (MEP) method with the Google Earth Engine (GEE). By employing the proposed framework and three data sources available in the GEE platform, results for actual ET and WUE from 2001 to 2020 were obtained in the Yellow River Basin (YRB). The results show that the proposed framework provides an acceptable estimation of actual ET via validation with Eddy Covariance flux sites in the YRB. The calculated WUE values varied greatly in different sub-basins within the YRB, indicating a cumulative growth rate of about 56% during the past 20 years. The dominant factor that led to these changes was the transition from Grasslands into other land-use types. Our results suggest that the use of the GEE platform coupled with the MEP method offers new possibilities for advancing understanding of water exchange and water resource management.

Funder

Ministry of Science and Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3