Dissecting the Characteristics and Driver Factors on Global Water Use Efficiency Using GLASS Data Sets

Author:

Hu Z. Y.12,Dai Q. H.12345ORCID,Yan Y. J.6,Zhang Y.12,Li H. Y.12,Zhou H.12,Yao Y. W.123

Affiliation:

1. College of Forestry Guizhou University Guiyang PR China

2. Institute of Soil Erosion and Ecological Restoration Guizhou University Guiyang China

3. College of Resources and Environmental Engineering Guizhou University Guiyang China

4. Guizhou Karst Environmental Ecosystems Observation and Research Station Ministry of Education Guiyang China

5. Now at Forestry College West Campus of Guizhou University Guiyang China

6. Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China

Abstract

AbstractEcosystem water use efficiency (WUE) is a crucial parameter for understanding the interaction between carbon and water cycles. However, the spatio–temporal evolution and drivers of WUE remain unclear. This study utilized global annual scale global land surface satellite gross primary productivity and evapotranspiration data from 1982 to 2018 to estimate WUE and analyze its spatio–temporal characteristics. Additionally, the study investigated the response of WUE changes to five environmental factors (precipitation [PRE], soil moisture, temperature [TEM], palmer drought severity index, and vapor pressure deficit [VPD]) on WUE changes using partial correlation and structural equation modeling. The results suggested that the global annual WUE increased markedly over the study period, at an average rate of 0.0016 gC m−2 mm−1 H2O year−1. In contrast to the existing knowledge on the drivers of WUE change, climate change was found to have a larger contribution to WUE changes at the global and regional scales, especially in terms of TEM and VPD. A positive correlation between TEM and WUE was observed, but extreme TEM could lead to a decrease in WUE. VPD had the most significant direct effect on WUE, and its negative effect offset the positive influence of TEM especially in hyper‐arid, semi‐arid, and arid regions. These findings offer new insights into the impact of VPD and global warming on WUE.

Publisher

American Geophysical Union (AGU)

Reference131 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3