DPPH Radical Scavenging Assay

Author:

Gulcin İlhami1ORCID,Alwasel Saleh H.2ORCID

Affiliation:

1. Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey

2. Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Today, there is an increasing interest in antioxidants, especially to prevent the known harmful effects of free radicals in human metabolism and their deterioration during processing and storage of fatty foods. In both cases, natural-source antioxidants are preferred over synthetic antioxidants. So, there has been a parallel increase in the use of assays to estimate antioxidant efficacy in human metabolism and food systems. Today, there are many bioanalytical methods that measure the antioxidant effect. Of these, the 1,1-diphenyl-2-picrylhydrazil (DPPH) removing assay is the most putative, popular, and commonly used method to determine antioxidant ability. In this review, a general approach to the DPPH radical scavenging assay has been taken. In this context, many studies, including attempts to adapt the DPPH radical scavenging method to different analytes, search for the highest antioxidant activity values, and optimize the method of measurement, have previously been performed. Therefore, it is highly important to introduce measures aimed at standardizing the conditions of the DPPH radical scavenging activity, including the various reaction media suitable for this assay. For this aim, the chemical and basic principles of DPPH free radical scavenging are defined and discussed in an outline. In addition, this study describes and defines the basic sections of DPPH free radical scavenging in food and biological systems. Additionally, some chemical, critical, and technical details of the DPPH free radical removal method are given. This is a simple assay in which the prospective compounds or herbal extracts are mixed with the DPPH solution and their absorbance is measured after a certain period. However, despite rapid advances in instrumental techniques and analysis, this method has not undergone extreme modification. This study presents detailed information about the DPPH method and an in-depth review of different developments.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3